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Abstract

The emergence of antibiotic resistance is a defining challenge, and Escherichia coli is recognized as one of the leading

species resistant to the antimicrobials used in human or veterinary medicine. Here, we analyse the distribution of 2172

antimicrobial-resistance (AMR) genes in 4022 E. coli to provide a population-level view of resistance in this species. By

separating the resistance determinants into ‘core’ (those found in all strains) and ‘accessory’ (those variably present)

determinants, we have found that, surprisingly, almost half of all E. coli do not encode any accessory resistance

determinants. However, those strains that do encode accessory resistance are significantly more likely to be resistant

to multiple antibiotic classes than would be expected by chance. Furthermore, by studying the available date of

isolation for the E. coli genomes, we have visualized an expanding, highly interconnected network that describes how

resistances to antimicrobials have co-associated within genomes over time. These data can be exploited to reveal

antimicrobial combinations that are less likely to be found together, and so if used in combination may present an

increased chance of suppressing the growth of bacteria and reduce the rate at which resistance factors are spread.

Our study provides a complex picture of AMR in the E. coli population. Although the incidence of resistance to all

studied antibiotic classes has increased dramatically over time, there exist combinations of antibiotics that could, in

theory, attack the entirety of E. coli, effectively removing the possibility that discrete AMR genes will increase in

frequency in the population.

DATA SUMMARY

1. Information on Escherichia coli genome sequences that
we believe are mislabelled in GenBank has been deposited
in Figshare; DOI: 10.6084/m9.figshare.4434776 (url –

https://dx.doi.org/10.6084/m9.figshare.4434776).

2. A figure showing the phylogenetic position of genomes
that we consider too distantly related to E. coli to be
included in our analysis has been deposited in Figshare;
DOI: 10.6084/m9.figshare.4434779 (url – https://dx.doi.org/
10.6084/m9.figshare.4434779).

3. A list of genome sequences used in this study has been
deposited in Figshare; DOI: 10.6084/m9.figshare.4434782
(url – https://dx.doi.org/10.6084/m9.figshare.4434782).

4. Our curation of the antimicrobial-resistance
(AMR) determinants from the Comprehensive Antibiotic
Resistance Database has been deposited in Figshare; DOI:
10.6084/m9.figshare.4434788 (url – https://dx.doi.org/10.
6084/m9.figshare.4434788).

5. The sequence similarity score data underlying the analy-

ses in our study has been deposited in Figshare; DOI:

10.6084/m9.figshare.4434794 (url – https://dx.doi.org/10.

6084/m9.figshare.4434794).

6. A text-based representation of the graphs we used to gen-

erate antibiotic-resistance gene families has been deposited

in Figshare; DOI: 10.6084/m9.figshare.4434797 (url –

https://dx.doi.org/10.6084/m9.figshare.4434797).

7. A table of the genes we identified in the core resistome of

E. coli has been deposited in Figshare; DOI: 10.6084/m9.fig-

share.4434800 (url – https://dx.doi.org/10.6084/m9.figshare.

4434800).

8. A table highlighting the presence of core antibiotic-resis-

tance determinants in the horizontally transferred genes of

E. coli MG1655 has been deposited in Figshare; DOI:

10.6084/m9.figshare.4595371 (url – https://dx.doi.org/10.

6084/m9.figshare.4595371).
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9. A table of the resistance gene families we identified in the
accessory resistome of E. coli has been deposited in Figshare;
DOI: 10.6084/m9.figshare.4434803 (url – https://dx.doi.org/
10.6084/m9.figshare.4434803).

10. A visualization of our data on the distribution of acces-
sory resistance in E. coli has been deposited in Figshare;
DOI: 10.6084/m9.figshare.4434809 (url – https://dx.doi.org/
10.6084/m9.figshare.4434809).

11. A figure that shows it is unlikely that bias inherent in
the sequenced E. coli resource has affected our analysis has
been deposited in Figshare; DOI: 10.6084/m9.fig-
share.4595389 (url – https://dx.doi.org/10.6084/m9.figshare.
4595389).

12. A figure that shows antibiotic resistance and phyloge-
netic distance are not correlated has been deposited in Fig-
share; DOI: 10.6084/m9.figshare.4595377 (url – https://dx.
doi.org/10.6084/m9.figshare.4595377).

13. A visualization of the increase in the abundance of resis-
tance to antibiotic classes in E. coli over time has been
deposited in Figshare; DOI: 10.6084/m9.figshare.4434815
(url – https://dx.doi.org/10.6084/m9.figshare.4434815).

14. An animated visualization of the co-association of AMR
in E. coli over time has been deposited in Figshare; DOI:
10.6084/m9.figshare.4434773 (url – https://dx.doi.org/10.
6084/m9.figshare.4434773).

15. Data on the combinations of antibiotics for which all E.
coli lack combined resistance has been deposited in Fig-
share; DOI: 10.6084/m9.figshare.4434818 (url – https://dx.
doi.org/10.6084/m9.figshare.4434818).

INTRODUCTION

The spread of antimicrobial resistance (AMR) in pathogenic
bacteria is one of the key public-health concerns and
national security risks of the modern era [1]. The diminu-
tion of efficacious treatments for infections has reached cri-
sis point, not only in impoverished areas of the world,
where mortality due to bloodstream infections by Gram-
negative bacteria is more than double that caused by malaria
[2], but also in affluent countries where bacteria with AMR
are associated with many thousands of avoidable deaths
each year [3, 4]. Resistance has emerged to almost every
class of antimicrobial agent that has been developed [5],
and the rapid evolution of resistance to these drugs has led
to the fear of an end to the antibiotic era, and a return to a
situation where even common ailments and injuries may be
sufficient to kill [6].

Bacteria of the species Escherichia coli are among the leading
causes of serious intestinal and extra-intestinal disease
worldwide [7]. Of still greater concern, these bacteria are
recognized as amongst the most resistant to antimicrobial
agents that have a tradition of use in human or veterinary
medicine [8]. E. coli demonstrates intrinsic resistance to
a wide range of antimicrobial and toxic compounds,

conferred by a combination of proteins that serve as multi-
drug efflux pumps, including TolC, AcrAB, AcrEF, EmrKY
and MdtABC, amongst others [9–14]. Other mechanisms of
resistance can include genetic polymorphisms that render
the antibiotic’s target less sensitive to inhibition [15–18].
However, high-level resistance to specific classes of antibiot-
ics usually requires additional factors, including proteins
that facilitate the export, modification or degradation of the
antibiotic molecule [18].

The genes that confer AMR are found not only in isolates of
human origin, but also in environmental bacteria, those iso-
lated from domestic and wild animals [19–21], and even
natural ecosystems or human populations secluded from
modern medical or agricultural interventions [22, 23]. How-
ever, although AMR is present in diverse environments, the
frequency of AMR can be strongly correlated with anthro-
pogenic activity [24–26]. Furthermore, studies consistently
demonstrate a trend for the increasing frequency of AMR
and associated determinants over time [27–32].

Although the molecular mechanisms of many AMRs are
well characterized, investigation of the population genetics
of antibiotic resistance within the E. coli species has received
less attention. Understanding the diversity and distribution
of AMRs in this species is crucial to understand the evolu-
tion of AMR and to explore whether this information can
help us extend the useable lifespan of antibiotics in the
absence of novel discoveries.

METHODS

Acquisition, curation and phylogenetic analysis of
E. coli genome sequences

We downloaded the nucleotide sequences of 5788 Escheric-
hia and Shigella genomes from GenBank on the 19th Octo-
ber 2016. Source and date of isolation data and reference
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information available in the GenBank record was collected
at the same time. Four strains were excluded because the
strain names and BioSample accession numbers (used for
indexing the strains) failed to be retrievable. We selected
good quality genome sequences from these records based
on the following criteria: (1) sequence contained fewer than
0.1% ambiguous bases (maximum approximately 5000
ambiguous nucleotides specified by the character), (2)
assembly comprised fewer than 500 contigs, (3) greater than
3Mb and less than 7Mb sequence length (smaller genomes
tended to be incomplete, and larger genomes tended to be
mixed samples comprising more than one bacterial
genome). By applying these criteria, we identified 4084
genomes that we considered good quality. Next, we queried
these genomes to ensure they belonged to genuine genus
Escherichia genomes. To do this, we probed these genomes
for the presence of 4322 gene sequences from the reference
E. coli K12 strain MG1655 (U00096) genome using BLAST

[33], and excluded 11 genomes that shared fewer than 2000
genes in common with this sequence. Aside from the
excluded sequence for Escherichia vulneris, the remainder of
the genome sequences we excluded we suspected were
entirely, or at least heavily contaminated with, non-
Escherichia or Shigella DNA (see Data bibliography 1).

To determine which among the remaining 4073 sequences
represented true species E. coli genomes, we used our data
to determine sequences that would be useful for phyloge-
netic reconstruction of the population structure of genus
Escherichia and Shigella genomes. We identified 16 genes
that could be reliably recovered from the genomes of all
4073 strains, 80 genes that could be recovered from the
genomes of at least 4072 strains, and 201 genes that could
be recovered from the genomes of at least 4071 strains. Sub-
sequently, we extracted the nucleotide sequences for the 201
genes, aligned this individually using Muscle [34],
concatenated them to one sequence, removed poorly aligned
regions using Gblocks [35], and reconstructed a maximum-
likelihood tree under the GTR model using RaxML [36].
The resulting tree was investigated to identify branches
that fell outside the major E. coli lineages (for example
strains more closely related to Escherichia albertii or
Escherichia fergusonii) – 51 strains were removed from fur-
ther analysis (supporting data under Data bibliography 2
shows the position of these genomes relative to E. coli). This
resulted in a final population of 4022 E. coli and Shigella
sequences that were used in further analysis. E. coli phy-
logroups were assigned by grouping genomes into the larg-
est monophyletic group that included all known target
phylogroup members, whilst excluding all others. Within
the GenBank records, strains isolated from similar sources
can have different annotations (i.e. human faecal and Homo
sapiens stool). To interrogate the source of isolation for each
strain, we reduced the disparate annotations to the shortest
list we could devise, using the isolation source data and the
reference information in the GenBank record, alongside our
own knowledge of widely used reference strains where this
information was missing in the GenBank record. Our final

source of isolation classification is presented alongside the
list of genomes used in this study in Data bibliography 3.

Curation of antibiotic-resistance factors

Data from the Comprehensive Antibiotic Database (CARD)
[37] was downloaded on the 19th October 2016. The antibi-
otic resistance ontology (ARO) designation for each gene
present in the CARD homologue model was cross-
referenced with the ARO index to determine the resistance
profile and mechanism for each gene. We supplemented
these resistance profiles with information for resistance to
olaquindox as resistance determinants (oqxA, oqxB) were
present in the CARD, yet the antimicrobial was not. Other
supplementation included assigning ‘multiple drug’ classifi-
cations to known mediators and regulators of multidrug
efflux. Our supplementary curation is provided in support-
ing data under Data bibliography 4.

Determining the presence of the CARD
determinants within the E. coli population

We queried the presence of the genes contained in the pro-
tein homologue model of the CARD within the E. coli popu-
lation by BLAST. To recover sequences possibly split across
contigs, we recovered high-scoring pairs (HSPs) that
matched the reference sequence by greater than 80% iden-
tity, where the database sequence covered more than 40%
of the query sequence. If more than one HSP for a given
query sequence was recovered from the database sequence,
the query sequence participating in the HSP was mapped
against the full-length gene, and this mapping used to
reconstruct the full-length gene from the database sequence
participating in the HSPs. The mean identity of HSPs par-
ticipating in the mapping and the percentage coverage of
the database sequence over the query sequence was used to
calculate a sequence similarity score (SSS), which is the
mean of sequence identity and the percentage sequence cov-
erage. A matrix of hits we identified in E. coli is provided in
supporting data under Data bibliography 5 – these data
underlie our analyses. We defined a gene as being present in
a genome when the query sequence matched within the
genome at a SSS of greater than 80%. We then assigned the
matched genes into two groups: core determinants – genes
present in more than 95% of the E. coli population; and
accessory determinants – genes present in fewer than 95%
of the E. coli population. We eliminated four genes from the
accessory determinants: (1) the gene encoding the pesticin
receptor fyuA, as we could not find any primary literature to
indicate this gene played a role in AMR; and (2) the genes
mdtM, ermA and pmrE from MG1655. We excluded these
latter genes as MG1655 is generally considered sensitive to
antibiotics and so we presumed these are unlikely to confer
high-level resistance.

Further treatment of the accessory determinants

To ensure we had accurately determined accessory resis-
tance elements rather than related orthologues that might
not provide resistance, we purified the genes we had
assigned to be present in the accessory genome by requiring
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them to have a SSS of 98% or greater. This resulted in the
identification of 1029 homologues within the accessory
determinants. Since many of the determinants in the CARD
are closely-related factors with slightly modified specificities
(for example TEM family b-lactamases), we decomposed
the accessory resistance determinants into AMR gene fami-
lies (AMRFs). To do this, we extracted the genes of the
accessory resistance determinants from the CARD and,
using BLAST, retrieved a list of gene pairs where those genes
had a SSS of 95%. We examined these gene pairs to ensure
each paired AMR determinant conferred resistance to the
same profile of antibiotics. In cases where the AMR profiles
differed, the pairs were excluded from the network – these
were confined to pairs between AAC(6’)-Ib-cr (fluoroquino-
lone and aminoglycoside resistances) and other similar
AAC(6’) genes that confer resistance only to aminoglyco-
sides [38]. Remaining gene pairs were then passed to the
graph building algorithm MCL [39] to build gene families
containing networks of homologues. We used these gene
families to collapse the accessory resistance determinants
for each strain to one call per family – if a strain matched at
least one gene in the family network to at least 98% we
called this gene family as present in this strain. The net-
works we used to generate the AMRFs are presented in sup-
porting data under Data bibliography 6.

Statistical evaluation of AMR carriage

To investigate whether the number of AMRs found in
genomes was different to what would be expected if AMR
determinants were randomly distributed in genomes, we
employed a resampling algorithm. Here, we randomized the
distribution of AMRFs over 100 000 replications, and
counted the number of resistances these families provided
to each strain. We then compared the actual observed num-
ber of resistances with this null distribution. Significance
was set at 0.0001.

To test for the possibility of bias within the genome sequences
– caused by the selection of strains for sequencing based on
their clinical importance, or indeed their antibiotic-resistance
profile – first we investigated whether the sequenced genomes
in the National Center for Biotechnology Information data-
base reasonably represented the diversity of E. coli; that is to
say, how closely related could a newly sequenced isolate of
E. coli be expected to be to an existing genome in the
sequenced database. To do this, we calculated a pairwise dis-
tance matrix from the distances between the tips of the phylo-
genetic tree using the ‘cophenetic.phylo’ function within the
APE package [40] in R. We then randomly drew strains from
the list of tree tips over increasing sample sizes (from 2 to
4022), took one of these randomly drawn genomes (a proxy
for a newly sequenced strain) and recorded the distance
between this sequence and the most closely related genome
from the sample (a proxy for existing genomes in the data-
base). We repeated this for 10 000 replications per sample size.
Next, to investigate whether the source of isolation of E. coli,
or the fact that some genomes have been sequenced because
of their AMR profile, overly affected our analysis, we

employed several variations of our AMR resampling method
on samples of genomes isolated from different sources: all
strains listed as isolated from non-human and non-unknown
sources; all strains where the words ‘antibiotic’, ‘antimicrobial’,
‘resistance’, or ‘resistant’ did not appear in the reference title;
all strains listed as from ‘human.urine’, ‘human.blood’, or
‘human.bodyfluid’; all genomes listed as isolated from ‘farms’,
‘cows’, ‘avian’, or ‘sheep’.

Testing the relationship between clonal-lineage
and AMR carriage

To investigate the possibility that phylogenetic distance
between strains could be correlated with AMR gene car-
riage, we calculated two distance matrices – one from the
phylogenetic tree describing the population structure of E.
coli, and one from the distribution of AMRFs. We then sam-
pled 100 000 identical pairwise distances from these matri-
ces, and compared the phylogenetic distance with the AMR
distance calculated for each pair. To investigate whether
clonal or lineage-related groups of E. coli tended to be more
enriched for AMR genes than more disparate strains, we
split the population structure of E. coli into two groups –

lineage-related strains or non-lineage-related strains – based
on the following criteria: (1) lineage-related strains existed
on subtrees with 10 or more tips, and (2) the maximum dis-
tance observed between any two genomes of the subtree was
no greater than 1% of the maximum distance observed
between all E. coli. These criteria split the population of
E. coli into two roughly equal groups. We then repeated our
resampling experiment for the evaluation of AMR gene car-
riage for these two groups.

Estimation of significantly associated resistances

To investigate which antibiotic combinations were found in
strains more frequently than would be expected by chance,
we used our resampling algorithm. In this case, the AMRFs
for the population under investigation (the whole popula-
tion for ‘all strains’, or the genomes isolated up until and
including the stated year for our time-course analysis), we
randomized over 10 000 replications. At each iteration, for
each pair of AMRs, the number of genomes encoding
AMRFs directed at these pairs of AMR were counted. The
actual observed number of co-resistances in the population
was then compared with this null distribution. We consid-
ered a pair of resistances to be significant if less than two of
the randomizations yielded a count as large or larger than
the actual value. These relationships were visualized using
the igraph package [41] within R.

Modelling

To simulate the effect of applying antibiotic combinations
on a hypothetical bacterial population, we designed the fol-
lowing model. Firstly 100 random genomes were selected
from the E. coli population, and the distribution of AMRFs
in these genomes recorded. For 1000 generations, the fol-
lowing steps were followed. (1) One random AMRF was
chosen for a chance to spread – if the population contained
at least one strain with the chosen AMRF, a randomly
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selected E. coli was donated this determinant. If the popula-
tion did not contain the AMRF, nothing changed. If the ran-
domly selected E. coli already has this determinant, nothing
changed. (2) A randomly selected E. coli was selected, which
was then ’exposed’ to the specified combination of antibiot-
ics. If the genome was sensitive to any of the specified anti-
biotics, the genome was removed from the population. If
the genome was resistant to all specified antibiotics, it was
placed back into the population. (3) If the strain was
removed from the population, a randomly selected genome
was duplicated in the population, or if the strain was
returned to the population, this genome was duplicated. At
each generation, the number of AMRFs in the population
and the size of the population relative to the start values was
recorded. For the simulations, the model was run for 1000
replicates per antibiotic combination.

RESULTS

Core resistome of E. coli is primarily composed of
multidrug efflux pumps

The core resistome of E. coli (defined as: 1, homologues of
greater than 80% identity with the reference sequence pres-
ent in the CARD; and 2, present in 95% or more strains)
comprises 50 genes (shown in supporting data under Data
bibliography 7). Although we expected these genes to be
fixed within E. coli genomes and not to be subject to hori-
zontal gene transfer (HGT), we were surprised to find six
(evgA, evgS, emrK, emrY, gadE and gadX) listed as putatively
horizontally transferred genes in the HGT-DB [42]
(Data bibliography 8).

However, we are not clear that all the genes listed in the
CARD mediate antibiotic resistance in E. coli. Within species
such as Streptococcus pneumoniae, patA encodes part of an
efflux pump that has been shown to export fluoroquinolones
[43]. However, in E. coli, patA, under the accession
number listed in the CARD (NP_417544.5), encodes a putres-
cine-2-oxoglutaric acid aminotransferase enzyme and we
could not find any literature describing this gene relating to
AMR in E. coli. Similarly, for the mfd gene, which putatively
confers resistance to fluoroquinolones in Campylobacter
jejuni [44], we could find no literature describing a similar
role in E. coli. It is also uncertain that the genes cysB and alaS
influence aminocoumarin resistance in the core resistome of
E. coli. Variants in both these genes can cause reduced sensi-
tivity to novobiocin [45], and it is possible that our identity
criteria have not discriminated the aminocoumarin-resistant
variants from their more sensitive counterparts. However, the
SSS for these two genes in our analysis tended to be very high,
and E. coli has previously been suggested to be intrinsically
insensitive to aminocoumarins [46].

Except for these entries, the remaining genes in the core
resistome mediate or modulate the efflux of multiple drugs,
including the acr, mdt and emr genes [12]. Other genes in
the core resistome included the pmr genes, which confer
minor alterations to the structure of cell surface lipopolysac-
charide and reduce sensitivity to polymyxin class antibiotics,

and bacA, which mediates resistance to peptide antibiotics
such as bacitracin.

Accessory resistome of E. coli is non-randomly
distributed

Within the CARD homologue model sequences, there were
90 AMRFs that matched to sequences found in the E. coli
population (shown in supporting data under Data bibliogra-
phy 9). These mediate resistances to 18 classes of antibiotic.
Table 1 summarizes a selection of reported MICs for certain
E. coli strains. These resistances around the phylogenetic
tree of E. coli are shown in supporting data under Data bib-
liography 10.

Different E. coli strains encode multiple different AMR
determinants – a fact clearly illustrated in Data bibliography
8 and 9. We were interested in exploring how the distribu-
tion of these AMRs translated to the total number of antibi-
otics each strain was capable of resisting, and so we
calculated the number of separate AMRs conferred by the
complement of determinants present in each strain
(Fig. 1a). These data revealed that AMR was not evenly
spread across the E. coli population, with a large proportion
of strains within phylogroups C, D, F and Shigella encoding
resistance, while resistance in phylogroups A, B1 and, to a
lesser degree, B2 was more sporadic. Phylogroup E strains
were marked by a very low level of AMR. Clearly, there are
many genomes that encode resistance to a considerable
number of antimicrobials. To explore whether the propor-
tion of genomes conferring resistance to different numbers
of antibiotics was unusual, we performed a re-sampling
analysis whereby, assuming the distribution of resistance
determinants was randomly assorted between the genomes,
we could calculate how many strains we would expect to
encode increasing numbers of AMRs, and compared this
with the observed number of strains (Fig. 1b).

These data showed that the numerical abundance of AMR
in E. coli clearly deviated from the range we would expect to
find if resistance determinants were randomly distributed
between the genomes – this expected distribution is shown
as violins within Fig. 1(b). The observed value is shown as a
coloured point: a red point indicates an observed value sig-
nificantly greater than expected, whilst a blue point repre-
sents an observed value significantly lower than expected.
We were also particularly surprised to find such a large pro-
portion of genomes to encode no accessory resistance deter-
minants – almost 45% (1809 genomes). This was
considerably more than if determinants were randomly dis-
tributed across strains, where we would expect on average
only 232 strains to lack AMR determinants. By contrast, the
number of strains encoding one, two, three or even four
AMRs was significantly less than would be expected by
chance. However, as the number of resistances rose to five
or more, we observed a shift in the significance, whereby the
number of strains we observed in these groups was signifi-
cantly greater than chance – in most instances dramatically
so. If resistance determinants were randomly distributed
through E. coli we would expect, on average, just 169, 37,
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6 and 1 genomes to contain five, six, seven or eight AMRs,
respectively, and no strains would encode resistance to nine
or more AMRs. However, we observed that 570 genomes
encoded five AMRs, 195 encoded six AMRs, 114 encoded
seven AMRs, 39 encoded eight AMRs, 24 contained nine
AMRs, 11 contained ten AMRs, 14 contained eleven AMRs,
2 contained twelve AMRs and even 1 genome encoded resis-
tance to thirteen separate classes of AMR.

Given the sampling of E. coli selected for sequencing is not
random, we investigated the possibility that the loading of
the sequence database with clinically important strains, for
example from human blood or urinary tract infections, had
biased our analyses. To do this, we explored several avenues.
Firstly, we found that the samples of E. coli that have been
sequenced, although not selected in a random fashion, likely
saturate the total diversity of E. coli. In Data bibliography 11
(a), we show that a newly sequenced E. coli will, on average,
be a phylogenetic distance of just 0.0009 from another,
already sequenced isolate. To put this distance in context,
this is comparable with the distances calculated between
several sequenced O157 :H7 genomes, and only slightly
greater than the distances calculated between sequences for
different K-12 clones. The relative position of this distance
value in an ordered list of unique distance values calculated

from the tree is shown in Data bibliography 11(b). This
observation may mitigate the effect of a biased selection of
strains for sequencing, as it indicates against the possibility
that sequenced E. coli represent particularly AMR-enriched
sub-lineages within the wider population structure of E. coli,
which are otherwise unexplored. Secondly, in
Data bibliography 11(c), we could show that the results of
our analysis did not change substantially by removing all
known E. coli isolated from human (and unknown) sources
from the analysed population, nor by removing all genomes
for which the reference given in the GenBank record con-
tained words related to antibiotic resistance. Furthermore,
by limiting our analysed population to strains isolated from
sources that were likely to be considered clinically import-
ant, such as human blood or urine, or which were unlikely
to be considered clinically important, such as those from
agricultural land or farmed animals, we still saw these
groups had significantly more genomes with no accessory
resistance than would be expected if AMR genes were ran-
domly assorted between strains, along with significantly
more strains having large numbers of AMR genes within
their genomes, regardless of isolation source.

In some other species of bacteria, AMRs are concentrated
into specific clonal or lineage-associated groups [47].

Table 1. Accessory antibiotic resistance in E. coli

This table lists 14 antibiotic classes to which E. coli has been reported to be sensitive, and the number of AMRFs from the accessory resistome that

are active against each of these classes. These antibiotics are abbreviated as follows: KM (kanamycin), SM (streptomycin), NEO (neomycin), GEM

(gentamicin), AMP (ampicillin), VQC (vancomycin-QC14), CAM (chloramphenicol), FOS (fosfomycin), CLIN (clindamycin), ERM (erythromycin), OLA (ola-

quindox), FLOR (florfenicol), HFU (81.723 hfu), COL (colicin), NAL (nalidixic acid), CIPRO (ciprofloxacin), NOR (norfloxacin), RIF (rifamycin), STRG (strep-

togramin G), STRF (streptothricin F), NOUR (nourseothricin), SUL (sulfamethoxazole), TET (tetracycline), TRI (trimethoprim).

Antibiotic class No. of AMRFs Typical mode of action Reported MIC (µg ml�1) Reference

Aminoglycosides 20 Protein synthesis inhibitors 2 (KM)

1.95 (SM)

1 (NEO)

0.2 (GEM)

[9]

[81]

[81]

[81]

b-Lactams 23 Peptidoglycan biosynthesis inhibitors 12.5 (AMP) [9]

Glycopeptides 1 DNA damaging agents 4.5 (VQC) [82]

Chloramphenicols 6 Protein synthesis inhibitors 6.25 (CAM) [9]

Fosfomycins 2 Peptidoglycan biosynthesis inhibitors 32 (FOS) [83]

Lincosamides 2 Protein synthesis inhibitors 100 (CLIN) [84]

Macrolides 8 Protein synthesis inhibitors 50 (ERM) [9]

Olaquindox 2 DNA synthesis inhibitor 9 (OLA) [85]

Phenicols 1 Protein synthesis inhibitors 4 (FLOR) [86]

Pleuromutilin 1 Protein synthesis inhibitors 1 (HFU) [87]

Polymyxin 1 Membrane disruption 0.5 (COL) [82]

Quinolones [Q]/fluoroquinolones [F] 7 DNA damaging agents 3.125 (NAL) [Q]

0.01 (CIPRO) [F]

0.004 (NOR) [F]

[9]

[9]

[9]

Rifampin 1 RNA synthesis inhibitors 2.4 (RIF) [88]

Streptogramin 3 Protein synthesis inhibitors 500 (STRG) [89]

Streptothricins 1 Protein synthesis inhibitors 8 (STRF)

2 (NOUR)

[81]

[81]

Sulfonamides 3 Dihydropteroate synthetase inhibitors 8 (SUL) [90]

Tetracyclines 4 Protein synthesis inhibitors 1.25 (TET) [9]

Trimethoprim 14 Dihydrofolate reductase inhibitor 2 (TRI) [91]
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However, even though, superficially, some particularly
highly sampled clonal groups of E. coli, such as Shigella or
O157 : H7, shared similar profiles of AMR, we could not
detect a relationship between phylogenetic distance and
similarity in AMR gene carriage (Data bibliography 12(a)).
To further test the possibility that clonal or lineage-related
strains tended to encode high-levels of AMR genes, we
separated the population structure of E. coli into two groups
– lineage-related strains and non-lineage-related strains –

based on the following criteria: (1) lineage-related strains
existed within subtrees of the larger phylogenetic tree that

contained ten or more strains, and (2) where the maximum
distance between any two of those strains was less than 1%
of the maximum distance between any E. coli. The resulting
trees reconstructed from these two groups can be seen in
Data bibliography 12(b). As shown in Data bibliography 12
(c), when we analysed these strains for significant enrich-
ments in AMR gene carriage, the profiles were remarkably
similar for both groups as we observed for the whole popu-
lation. Together, these data indicated that phylogenetic
relatedness between E. coli, perhaps surprisingly, does not
play a large role in determining the spectrum of AMR genes
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an individual strain harbours, and furthermore, the highly
resistant strains are not concentrated within specific and
closely related clonal, or lineage-related, groups.

Incidence of multidrug resistance in the E. coli

population has increased over time

Given that the number of AMRs present in E. coli appears
to follow a non-random distribution, we speculated that the
trend towards concentration of AMRs may be preserved in
the genomic ’fossil record’. From the 4021 genome sequen-
ces in our panel, 2925 (72.7%) of these had their year of iso-
lation recorded in the GenBank record – spanning years
between 1885 to 2016. We used this information to count
the number of AMRs in strains isolated from the same year,
and plotted this data in the box-plot shown in Fig. 2. These
data revealed a clear positive correlation between successive
years’ isolations and increasing AMRs. Investigation of this
trend via the Mann– Kendal test revealed a significant trend
towards increasing AMR in isolates over time. In fact, not
only were the total number of AMRs found in isolates
increasing over time, but also each AMR detected has simi-
larly increased (shown in the supporting data under Data
bibliography 10).

AMR in E. coli is highly interconnected

The concentration of AMR within E. coli strain leads inevita-
bly to the situation whereby treatment of an infection with
one antibiotic will probably – if the population of E. coli
includes a resistant strain – result in the concomitant popula-
tion increase in the level of resistance to other, unused antibi-
otics. This assumption led us to question whether we could
detect which antibiotic classes were likely to be encoded
together. To do this, we constructed a network of all the co-
resistance phenotypes found in the E. coli population. Then, to
determine which edges of this network were significant, we
randomized the distribution of AMRFs over 10 000 replica-
tions and eliminated the edges where at least one of the ran-
domizations resulted in a number of genomes containing both
resistances which was as large as – or larger than – the
observed value (equivalent to P=0.0001). This analysis
revealed a network of AMR genotypes in E. coli that were
highly interconnected. Indeed, all 18 classes of AMR found in
E. coli were found more often with at least one other class of
AMR than would be expected by a random distribution of
AMR genes. b-Lactam resistance was the most highly con-
nected AMR, and was significantly associated with 12 other
AMR phenotypes, whilst other highly connected AMR pheno-
types included trimethoprim (11 connections), sulfonamide (9
connections), aminoglycoside (8 connections) and chloram-
phenicol (7 connections). A visualization of how this network
of antibiotic resistance has evolved over time is presented as
an animated picture in supporting data under Data bibliogra-
phy 14.

Combination of antibiotics reduces the
microevolution of resistance in a computer model

As implied in Fig. 3, the use of any antibiotic will likely,
when the population contains resistant strains, result in an

increase in the level of resistance to multiple antibiotics.
What may be needed, therefore, to combat the rise of resis-
tance is to use knowledge of the diversity of E. coli and for-
mulate combinations of antibiotics which, when used
together, should be sufficient to kill any E. coli. One of the
most pernicious problems with the use of antibiotics is that
the effect of the antibiotic is not localized, but is distributed
to all resident microbiome bacteria. Ergo, if any of these bac-
teria encodes resistance to the antimicrobial used, the result
will be an increase in the population level of AMR, even if
an infection is resolved following the use of antibiotics. By
investigating the diversity of AMR in E. coli, we have esti-
mated combinations of three antimicrobials that theoreti-
cally should kill all E. coli – with the assumption E. coli are
all drawn from the known population
(Data bibliography 15). Unsurprisingly, many of these com-
binations involve those antibiotics where resistance is rela-
tively rare in E. coli.

To demonstrate this effect in a simple simulation, we con-
structed a model to investigate how the application of anti-
biotic combinations could change population dynamics in
respect of both bacterial and AMR gene numbers. Our
model had simple parameters using a sample of strains col-
lected at random from the E. coli population. At each gener-
ation, one gene family was randomly selected for the chance
to spread. So long as that gene was present in the sampled
population, and since our data indicated that antibiotic
resistance tends to co-associate, we selected the recipient
strain randomly from the subpopulation that already
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encoded at least one resistance gene. One strain was then
chosen as being exposed to a combination of antibiotics. If
the strain was resistant to all the selected antibiotics, it was
placed back into the population and its genotype was repli-
cated. If the strain was sensitive to at least one antibiotic, it
was removed from the population, and a randomly selected
genome was chosen to replicate (to prevent the population
crashing to zero). We also added an element of openness by
allowing, in each generation, a chance for one strain to cap-
ture a random AMR gene from outside the population. We
linked this chance with the size of the population, so that
larger populations had an increased chance of capturing
novel genes. At each generation, the mean number of resis-
tance genes found in the population was recorded and cal-
culated as the number of additional resistance determinants
in the population compared with the start of the experi-
ment. We also kept track of the number of bacteria in the
population, expressed as a fold change from the original
population (Fig. 4).

Fig. 4(a) shows the consequence of two of the most
frequently employed combinations of antibiotics – amino-
glycosides with b-lactams, and b-lactams with fluoroquino-
lones – in our model. Since resistance to these antibiotics
are so commonly observed together, resistant strains are fre-
quently drawn from the population. This causes the popula-
tion to quickly grow [Fig 4a (i, iii)]. Furthermore, and likely
because these resistances are frequently encoded alongside
several other resistances, the mean number of resistances in
the population also rapidly expands [Fig 4a (ii, iv)]. The
number of antibiotic-resistance genes expands to potentially

greater numbers in the b-lactam/fluoroquinolone treatment
[Fig. 4a (iv)] than in the aminoglycoside/-lactam treatment
[Fig. 4a (iii)].

This can be contrasted with selecting combinations of anti-
biotics that our previous results indicated should in theory
kill any E. coli. We ran our model using all 118 combina-
tions shown in supporting data under Data bibliography 12
to investigate the combinations – per our model parameters
– that resulted in the most efficacious killing and the slowest
rate of spread of antibiotic-resistance genes (results are
shown alongside the combinations used in
Data bibliography 12. Our results showed that some combi-
nations of these antibiotics should be more efficacious than
others (Fig. 4(b), with one of the most efficacious combina-
tions – pleuromutilin with polymyxin and glycopeptides –
outperforming the least effective by a considerable margin
in terms of suppressing population growth [compare Fig 4b
(i, iii)] and reducing the rate of the spread of resistance
genes [compare Fig. 4 b (ii, iv)]. In fact, exposure to pleuro-
mutilin, polymyxin and glycopeptide led to only a marginal
population increase over the 1000 generations, indicating
the rate at which E. coli gained resistance to all three of these
antibiotics in our model was very slow. This was observed
alongside the lowest rate of AMR determinant increase for
any combination. This is in contrast with the streptothricin,
macrolide and phenicol combination, which resulted in at
least a twofold increase in the population size at the end of
1000 generations [Fig. 4b (iii)], and approximately six more
resistance determinants per strain [Fig. 4b (iv)].
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Macrolides
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Phenicols

Streptogramins
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Pleuromutulins
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Fig. 3. The highly-interconnected network of antibiotic resistance in E. coli. This figure shows a network of AMRs that are more fre-

quently found together in E. coli than would be expected if AMRFs were randomly distributed across genomes. The vertex sizes are

proportional to the number of strains that encode the resistance, while the edge widths are proportional to the number of strains that

encode both the connected vertices as a function of how many contain either. Edges are coloured for clarity of visual representation of

connections .

Goldstone and Smith, Microbial Genomics 2017;3

9



DISCUSSION

Our analyses indicate that all E. coli encode a suite of core

resistance genes that presumably facilitate basal levels of

non-specific resistance to a variety of antimicrobial com-

pounds. The factors encoded within the core resistome tend

to be multidrug efflux pumps and regulators that likely

enable E. coli to navigate through environments that contain

low levels of a wide variety of toxic molecules, including
antibiotics produced by co-resident bacteria and fungi, dyes,
free fatty acids, and antimicrobial compounds produced by
eukaryotic hosts including bile salts [12–14, 48–50], or even
endogenously produced toxic by-products of metabolism
[51, 52]. These observations support the assertions put for-
ward by others that the intrinsic resistance of bacteria is due
to the activity of multidrug efflux pumps [13, 14].
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Fig. 4. Simulated effects of antibiotic combinations on population growth and AMR spread. This figure shows the results of our simu-

lation for commonly used antibiotic combinations (a), and the best [b(ii) and (iii)] and worst [b(iii) and (iv)] performing combinations

from our analysis of antibiotic combinations that can kill any E. coli. For commonly used combinations, the population in our simulation

rapidly expanded [a (i) and (iii)], and the mean number of resistance determinants in the population quickly increased [a(ii) and (iv)].

For the best performing antibiotic combination in our model (pleuromutilin with polymyxin and glycopeptide), population expansion

was minimal [b(i)], while the rate of spread of AMR was low [b(ii)]. For the worst performing combination in our model (streptothricin

with macrolide and phenicols), we observed a twofold population increase over 1000 generations [b(iii)], while the mean number of

resistances in the population increased substantially [b(iv)].
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In addition to the core resistome, many, but not all, E. coli
encode accessory resistance determinants. Intriguingly, and
despite the perception that E. coli represent amongst the
most resistant bacteria to antibiotics commonly employed
in medical and veterinary medicine [8], accessory resistance
factors are not as frequent in E. coli strains as may be
expected, and only slightly more than half of all E. coli
encode detectable accessory resistance factors. Phylogroup
E isolates tend to encode by far the fewest AMRs and, hence,
tend to be resistant to few antibiotic classes. This fact may
be explained, at least in part, by phylogroup E representing
largely a homogeneous group of E. coli, with a large majority
of these isolates drawn from the O157 : H7 genotype, which,
it could be argued, is massively oversampled. The general
lack of AMRs in the O157 : H7 cluster is contrasted with
phylogroup E strains that fall outside this group, such as the
O157 : H16 strain Santai (BioSample accession no.
SAMN02673556), which encodes resistance to 11 antibiotic
classes. Nevertheless, the low abundance of antibiotic resis-
tances in this serotype has also been detected in previous
surveys [53]. The low level of resistance in this group of E.
coli is accompanied by the knowledge that antibiotic treat-
ment of O157 : H7 infections is known to worsen the disease
[54]. However, it is difficult to imagine how this facet alone
would lead to a strategy that is evolutionarily successful.
Other studies have, however, detected modest [55–57] or
even very high [58] levels of antibiotic resistance in O157
E. coli, and so it is possible that antibiotic resistance in this
group of E. coli is mediated by cryptic factors that are not
represented in the determinants currently present in the
CARD. Clearly, the parameters surrounding antibiotic resis-
tance in this group of E. coli remain to be elucidated.

The factors in the accessory genome provide resistance against
antibiotic classes that have activity against sensitive E. coli. The
antimicrobials present in the CARD homologue model that
we could not detect resistance factors for in E. coli are amino-
cocumarins, triclosan, linezolids, elfamycins, fusidic acid,
mupirocin and tunicamycin. Most of these antibiotics appear
ineffective against E. coli owing to intrinsic insensitivity (ami-
nocoumrin [46] and tunicamycin [59]), efficient efflux (line-
zolids [60] and fusidic acid [61]) or lack of penetration into
the cell (elfamycins [62]). Furthermore, resistance towards
mupirocin may be mediated through polymorphisms in the
antibiotic target gene [63], which does not appear to be
included in the CARD. It is only the antiseptic triclosan that
these bacteria do not appear to have yet acquired defined
resistance mechanisms, although wild strains of E. coli can
vary in their sensitivity to this antimicrobial [64].

The genomes of E. coli that do encode resistance determi-
nants are significantly more likely to contain multiple resis-
tance than would be expected by chance. Indeed, one strain
we identified as encoding resistance to 13 of the 18 classes
of antibiotic that E. coli may resist. This strain was isolated
from the rectum of a pig in China in 2012. Perhaps surpris-
ingly, while it may be expected that this strain would origi-
nate within clades recognized for high levels of resistance,

such as ST131, this strain belongs to phylogroup A. The
massive compliment of AMRFs in this isolate include TEM-
91, AAC-6¢, ErmB, Oxa-31, CmlA4, FloR, Arr2, Sul2, RmtB,
Aph-3¢-Ib, MphA, Mrx, Aph-3’�1a, Aac-3-IV, Aac-6¢-IB-
cr, Sul3, Sul1, DfrA12, Mcr-1, OqxAB, CatB3 and Aph-4-Ia.

The trend for E. coli to accumulate AMR is preserved in the
genomes for which the date of isolation has been recorded
in GenBank. In many ways, our data showing that AMR has
increased over time in E. coli may be unsurprising, as previ-
ous studies and meta-analyses of the published literature
have shown that the frequency of specific antibiotic resis-
tances and AMRs have been increasing over time in both
E. coli and other Gram-negative bacilli [31, 65–71]. How-
ever, although it makes sense that a trend for increasing
individual resistances would lead to increasing total num-
bers of resisted antibiotic classes, here we present genomic
evidence that the historical increase in antibiotic resistance
in E. coli is compounded to make contemporary strains
more likely to be MDR strains than their ancestors. The
implications of our analysis are dramatic – an average popu-
lation level increase in resistance to an additional antibiotic
every 20 years. E. coli isolated in 2016 are already, on aver-
age, resistant to almost three antibiotics, and our trendline
predicts that the average E. coli isolated in 20 years are
highly likely to be resistant to four agents. This observation
supports the contention that high-level multidrug resistance
will be an increasing challenge in healthcare over future
decades.

Underlying this substantial increase in resistance may be
the propensity for resistance determinants to co-associate
within genomes, and our data indicates that AMR in E. coli
are extensively interconnected. This is consistent with the
co-carriage of resistances on plasmids and other mobile ele-
ments, although this facet was not a goal in our current
investigation. This highly connected network of resistances
in E. coli is extremely problematic, since it is indicative that
treating a resistant infection with an antibiotic will not just
result in the population level increase of resistance to the
employed antibiotic, but will also result in the concomitant
increase in the level of resistance to several other antibiotics.
Furthermore, our visualization of how these relationships
have developed over time show an explosion of co-resistan-
ces in the early years of the 21st century, and it may not be
long before pan-resistance to antimicrobials becomes so fre-
quent that no antibiotic will be useful against many infec-
tions. The recent report of a pan-resistant Klebsiella isolate
[72] is a salient indication of the potential extent of risk.
There is clearly an imperative to address this as indicated in
numerous strategy documents from public health organiza-
tions and agencies.

Our findings suggest that incorporation of genomic epide-
miology and modelling into selecting antibiotics for use in
combination therapies presents opportunities to mitigate
the spread of antibiotic resistance, as well as increase the
probability for the infection to be cured. The use of combi-
natorial antibiotic therapy is controversial, and meta-
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analyses on the efficacy of these approaches often show no
improvements in mortality rates compared with mono-
therapies [73–75], other than in high-risk patients [73] or
where the infection was caused by Pseudomonas aeruginosa
[74], which are characteristically multidrug resistant. Low-
risk patients may even have an increased risk of death fol-
lowing combination therapy [73], perhaps due to the
reported increase in the risk of complications such as neph-
rotoxicity [75]. Hence, careful consideration of clinical
implications is a further significant issue.

Importantly, what may confound many meta-analyses is
information on the appropriateness of the antibiotics used.
Inappropriate antibiotic choices (which includes non-sus-
ceptibility and lack of timeliness) are associated with worse
clinical outcomes, longer hospital stays and higher mortality
than appropriate ones [76, 77]. Patients given inappropriate
antibiotics can be three times less likely to survive hospitali-
zation following Gram-negative sepsis than those treated
appropriately [78]. Appropriate antibiotic choices require
understanding of the AMR of individual case isolates, as
well as the population genetics of AMR in the pathogen.
Several of the meta-analyses showing poor results from
combination therapy looked at combinations of b-lactams
and aminoglycosides [74, 75], which we find are two of the
most commonly resisted – and significantly likely to be
resisted together – classes of antibiotic. Of the 2072 E. coli
genomes that encode either b-lactam or aminoglycoside
resistance over half of all strains – 80% – encode both. It is
possible that poor outcomes in these cases may have
resulted from inappropriate antibiotic regimens rather than
the failure of the combinatorial approach per se.

Indeed, our model reveals the potential futility of combining
drugs such as b-lactams with aminoglycosides or fluoroqui-
nolones, both for controlling infections and for reducing the
spread of resistance genes – likely because of the high fre-
quency that these antibiotics are currently co-resisted and in
the presence of additional resistance genes – when resistant
bacteria multiply following antibiotic challenge this causes
the total number of resistance genes in the population to
increase massively. Instead, we suggest that using informa-
tion on the known diversity of AMR in E. coli, we should be
choosing combinations of antimicrobials which are rarely, if
ever, resisted together. We have identified 118 combinations
of antibiotic classes where resistances to all three are not
found in E. coli – many of these combinations have comple-
mentary targets and modes of action. By applying these
combinations in our simulation, we can suggest that some
of these combinations may both improve the number of
successful treatments and slow the rate at which resistance
genes spread in the E. coli population. However, we recog-
nize that the combinations of antibiotics we have indicated
may not be clinically practicable.

Combination therapies are not without risk. For example, it
has been reported that combination antibiotics may select
for broad-spectrum multi-drug resistance, at least in P. aer-
uginosa where dysregulated efflux pumps appear to drive

high levels of resistance following ciprofloxacin (fluoroquin-
olone) and ceftazidime (b-lactam) treatment [79]. Hence,
further evaluation of drug combinations will be necessary to
inform any decision-making.

There is a wide diversity of E. coli in the GenBank database.
However, and predictably considering the importance of
AMR, several studies have sequenced genomes directly asso-
ciated with resistance. Therefore, the sequenced E. coli pop-
ulation cannot be considered as representing a random
sample of the wider population, and the risk of over-
estimating AMR in E. coli should be interpreted considering
this bias. However, our previous work has indicated that the
representation of the diversity of E. coli in sequenced
genomes is comprehensive [80], which may mitigate the
effect of the bias caused by the selection of AMR strains for
sequencing. Irrespective of how representative the 4021
E. coli subjected to this analysis are, the relentless emergence
of multi-resistant strains will remain a major healthcare
challenge for decades ahead.
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